1	$(-4 a+13)(15 a+8)$	16	$(5 a+16)(11 a+15)(9 a+20)$
2	$(-2 b+20)(4 b+5)$	17	$(13 b+17)(10 b+7)(4 b+11)$
3	$(12 c+7)(-5 c+8)$	18	$(8 c+18)(11 \mathrm{c}+20)(8 \mathrm{c}+11)$
4	$(-7 d+15)(10 d+15)$	19	$(3 d+20)(10 d+0)(10 d+14)$
5	$(7 e+10)(-8 e+0)$	20	$(8 \mathrm{e}+9)(9 \mathrm{e}+8)(10 \mathrm{e}+14)$
6	$(12 \mathrm{f}+7)(2 \mathrm{f}+3)$	21	$(5 f+6)(2 f+3)(15 f+0)$
7	$(-7 g+16)(-3 g+16)$	22	$(8 g+9)(8 g+2)(3 g+20)$
8	$(7 h+7)(8 h+9)$	23	$(12 h+0)(13 h+16)(14 h+14)$
9	$(-4 i+7)(2 i+17)$	24	$(15 j+3)(12 j+9)(5 j+9)$
10	$(-4 j+3)(8 j+3)$	25	$(11 k+11)(6 k+17)(6 k+19)$
11	$(1 k+8)(-4 k+5)$	26	$(8 m+0)(3 m+8)(5 m+3)$
12	$(-5 m+6)(13 m+13)$	27	$(10 n+12)(5 n+19)(10 n+15)$
13	$(-8 n+7)(-6 n+10)$	28	$(12 p+9)(12 p+3)(14 p+17)$
14	$(11 p+7)(13 p+15)$	29	$(6 q+3)(2 q+3)(3 q+2)$
15	$(2 q+7)(11 q+0)$	30	$(2 r+13)(9 r+8)(8 r+14)$

Application

A For the cuboid above, find expressions for:
i) the total length of the edges;
ii) the surface area;
iii) the volume of the cuboid.

B If $\mathrm{k}=9$ and the lengths are given in cm . The cuboid weighs 2714.924 kg . Calculate the density of the cuboid. (Hint: Weight $=$ density \times Volume)

C Below is listed the density of several metals. Of which of the metals listed below is the cuboid made?

Material	Density
Gold	$19.32 \mathrm{gcm}^{-3}$
Platinum	$21.45 \mathrm{gcm}^{-3}$
Rhenium	$21.04 \mathrm{gcm}^{-3}$
Silver	$10.5 \mathrm{gcm}^{-3}$
Steel	$7.8 \mathrm{gcm}^{-3}$
Tungsten	$19.35 \mathrm{gcm}^{-3}$

D If the cuboid had been made from Steel and the value of $\mathrm{k}=6$:
i) How much lighter would the cuboid have weighed?
ii) Give the weight of the steel cuboid as a percentage of the original cuboid.

